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Abstract
We investigate the structure of SO(3)-invariant quantum systems which are
composed of two particles with spins j1 and j2. The states of the composite
spin system are represented by means of two complete sets of rotationally
invariant operators, namely by the projections PJ onto the eigenspaces of
the total angular momentum J , and by certain invariant operators QK which
are built out of spherical tensor operators of rank K. It is shown that these
representations are connected by an orthogonal matrix whose elements are
expressible in terms of Wigner’s 6-j symbols. The operation of the partial
time reversal of the combined spin system is demonstrated to be diagonal
in the QK -representation. These results are employed to obtain a complete
characterization of spin systems with j1 = 1 and arbitrary j2 � 1. We prove
that the Peres–Horodecki criterion of positive partial transposition (PPT) is
necessary and sufficient for separability if j2 is an integer, while for half-
integer spins j2 there always exist entangled PPT states (bound entanglement).
We construct an optimal entanglement witness for the case of half-integer
spins and design a protocol for the detection of entangled PPT states through
measurements of the total angular momentum.

PACS numbers: 03.67.Mn, 03.65.Ud, 03.65.Yz

1. Introduction

Entanglement is a basic feature of composite quantum systems connected to the tensor product
structure of the underlying Hilbert space of states. A mixed state of a bipartite quantum system
described by some density matrix ρ is said to be entangled or inseparable if ρ cannot be written
as a convex linear combination of product states. Otherwise it is called classically correlated
or separable [1]. The properties of entangled states are responsible for many of the fascinating
and curious aspects of the quantum world and lie at the core of many proposed applications in
quantum information processing [2–4].

0305-4470/05/419019+19$30.00 © 2005 IOP Publishing Ltd Printed in the UK 9019

http://dx.doi.org/10.1088/0305-4470/38/41/013
mailto:breuer@physik.uni-freiburg.de
http://stacks.iop.org/JPhysA/38/9019


9020 H-P Breuer

The general characterization and quantification of entanglement in mixed quantum states
is a highly non-trivial problem. It is even very difficult, in general, to formulate simple
operational criteria which allow a unique identification of all separable states of a given
composite system. There do exist, however, many necessary separability criteria [5–13]. A
simple and, in fact, very strong criterion is the Peres–Horodecki criterion [5, 6] which states
that a necessary condition for a given density matrix ρ to be separable is that it has a positive
partial transposition (PPT states). It is known that this criterion is necessary and sufficient for
certain low-dimensional systems, while it is only necessary in higher dimensions [6].

The analysis of the entanglement structure is greatly facilitated through the introduction
of symmetries, i.e., if one restricts oneself to those states of the composite system which
are invariant under certain groups of symmetry transformations. Important examples in this
context are the manifolds of the Werner states [1], of the isotropic states [7, 14] and of the
orthogonal states [15]. Here, we investigate entanglement under the symmetry group SO(3)

of proper three-dimensional rotations of the coordinate axes. More precisely, we consider the
problem of mixed state entanglement of systems which are composed of two particles with
spins j1 and j2, and which are invariant under product representations of the group SO(3)

or, equivalently, of the covering group SU(2). A basic tool of our analysis is the work of
Vollbrecht and Werner [15] which provides a general scheme for the treatment of entanglement
under given symmetry groups.

Mixed SO(3)-invariant states of composite systems arise, for example, from the interaction
of open systems [16] with isotropic environments [17]. Their analysis is of great importance
and leads to many applications. As examples we mention investigations on the connection
between quantum phase transitions and the behaviour of entanglement measures (see, e.g.,
[18, 19]), the analysis of entanglement of SU(2)-invariant multiphoton states generated by
the parametric down-conversion [20], and studies of the entanglement of formation [21]. The
technique of this paper could also be relevant for the characterization of quantum correlations
in Fermionic or Bosonic systems developed recently [22, 23].

The Hilbert space of a system which is composed of two particles with spins j1 and j2

is given by the tensor product C
N1 ⊗ C

N2 , where N1 = 2j1 + 1 and N2 = 2j2 + 1 are the
dimensions of the local spin spaces. We call such a system an N1 ⊗ N2 system. Throughout
the paper we will assume that j1 � j2, i.e., N1 � N2.

According to the Peres–Horodecki criterion [5, 6] the cases of 2⊗2 and 2⊗3 systems are
trivial: it is known that in these cases the PPT criterion is necessary and sufficient for all states,
i.e., even for states which are not invariant under rotations. Schliemann [24] has shown recently
that the PPT criterion is also necessary and sufficient for SO(3)-invariant 2 ⊗N2 systems with
arbitrary N2. The case of 3 ⊗ 3 systems has been treated by Vollbrecht and Werner [15],
who proved that the PPT criterion is again necessary and sufficient for separability. For 4 ⊗ 4
systems a qualitatively new situation arises. It has been demonstrated in [25] that the PPT
criterion is not sufficient and that the entangled PPT states form a three-dimensional manifold
which is isomorphic to a prism. In the present work, we investigate the important special case
of 3 ⊗ N2 systems with arbitrary N2.

The method developed in [25] enables the treatment of the case of equal spins j1 = j2. In
this paper we extend this method to arbitrary spins j1 and j2. For the analysis of entanglement
under SO(3)-symmetry it is advantageous to replace the transposition used in the PPT criterion
by another unitarily equivalent operation, namely by the antiunitary transformation of the time
reversal. The reason for this fact is that the operation of the time reversal of states commutes
with the representations of the rotation group.

There are two natural representations of rotationally invariant states. The first one uses
the fact that any invariant state can be written as a unique convex linear combination of
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the projections PJ onto the eigenspaces of the total angular momentum J of the composite
spin system. The advantage of this representation is that it leads to very simple conditions
expressing the positivity and the normalization of physical states. However, the set of the
PPT states is most easily determined in another representation which employs the irreducible
spherical tensor operators of spin-j particles. We will construct a complete system of invariant
operators QK which are built out of the spherical tensors of rank K. Any invariant state of the
composite spin system can then be written as a unique linear combination of the QK . The
introduction of the invariant operators QK generalizes the ideas of Schliemann [24, 26], who
has developed a representation of SU(2)-invariant states by means of spin–spin correlators
and has formulated various separability conditions and sum rules in terms of these correlators.

The paper is organized as follows. The representations of SO(3)-invariant states in terms
of the invariant operators PJ and QK are constructed in section 2. We also derive in this
section the linear transformation which connects these representations, and show that it is
given by an orthogonal matrix whose elements are determined by Wigner’s 6-j symbols. The
behaviour of states under partial time reversal and the construction of the set of the invariant
separable states are discussed in section 3.

The general theory is then applied in section 4 to the case of 3⊗N2 systems with arbitrary
N2. We prove that the PPT criterion represents a necessary and sufficient separability condition
for 3 ⊗ N2 systems if and only if N2 is odd. Thus, for integer spins j2 all PPT states are
separable, while for half-integer spins j2 there always exist entangled PPT states. This fact has
already been conjectured by Hendriks [27] on the basis of a detailed numerical investigation.
We also show that for half-integer j2 the boundary of the separability region is curved. Finally,
section 5 contains a discussion of the results and some conclusions. In particular, we construct
an optimal entanglement witness for the case of half-integer spins and exploit this witness to
design a protocol which allows the detection of entangled PPT states through measurements
of the total angular momentum.

2. Representations of SO(3)-invariant states

We consider two particles with spins j1 and j2 and corresponding angular momentum operators
ĵ(1) and ĵ(2). The Hilbert space C

N1 of the first particle is spanned by the common eigenstates
|j1,m1〉 of the square of ĵ(1) and of ĵ(1)

z , where N1 ≡ 2j1 + 1 and m1 = −j1, . . . , +j1.
Correspondingly, the Hilbert space C

N2 of the second particle is spanned by the eigenstates
|j2,m2〉, where N2 ≡ 2j2 + 1 and m2 = −j2, . . . , +j2.

The Hilbert space of the total system composed of both particles is given by the tensor
product C

N1 ⊗ C
N2 . The angular momentum operator of the composite system is defined by

Ĵ = ĵ(1) ⊗ I + I ⊗ ĵ(2), (2.1)

where I denotes the unit matrix. A state of the composite system is described by a density
matrix on the product space, i.e., by a positive operator ρ on C

N1 ⊗ C
N2 with unit trace:

ρ � 0, tr ρ = 1.
The irreducible unitary representation of the group SO(3) of proper rotations R on the state

space of a particle with spin j will be denoted by D(j)(R). The transformation of the states of
the composite spin system is then given by the product representation D(j1)(R) ⊗ D(j2)(R).
A state ρ of the combined system is said to be rotationally invariant or SO(3)-invariant if the
relation

[D(j1)(R) ⊗ D(j2)(R)]ρ[D(j1)(R) ⊗ D(j2)(R)]† = ρ

holds true for all proper rotations R ∈ SO(3).
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We shall use two different representations of rotationally invariant states. The first one
employs the projection operators

PJ =
+J∑

M=−J

|JM〉〈JM|, (2.2)

where |JM〉 denotes the common eigenstate of the square of the total angular momentum Ĵ
and of its z-component Ĵ z, i.e., we have Ĵ2|JM〉 = J (J + 1)|JM〉 and Ĵ z|JM〉 = M|JM〉.
The operator PJ projects onto the manifold which is spanned by the eigenstates belonging to
a fixed value J of the total angular momentum. According to the triangular inequality J takes
on N1 different values which may be integer or half-integer valued:

J = j2 − j1, j2 − j1 + 1, . . . , j2 + j1. (2.3)

It follows from Schur’s lemma that any invariant state ρ can be written as a linear combination
of the PJ :

ρ = 1√
N1N2

∑
J

αJ√
2J + 1

PJ . (2.4)

Here, the αJ are real parameters and we have introduced convenient normalization factors of√
N1N2 and

√
2J + 1. In order for equation (2.4) to represent a true density matrix the αJ

must of course be positive and normalized appropriately:

αJ � 0, (2.5)

tr ρ =
∑

J

√
2J + 1

N1N2
αJ = 1. (2.6)

Any invariant state ρ is thus uniquely characterized by a real vector α in an N1-dimensional
parameter space R

N1 which will be referred to as α-space. The conditions of the positivity
and of the normalization of ρ are expressed by the relations (2.5) and (2.6). We denote the set
of all vectors α whose components αJ satisfy these relations by Sα . Being isomorphic to the
set of invariant states, Sα is of course a convex set. We infer from equations (2.5) and (2.6)
that Sα represents an (N1 − 1)-dimensional simplex.

A useful alternative representation of the invariant states is obtained by use of a complete
system of irreducible spherical tensor operators (see, e.g., [28, 29]). The tensor operators
which act on the state space of the particle with spin ji are written as T

(i)
Kiqi

, where i = 1, 2.
The index Ki = 0, 1, . . . , 2ji denotes the rank of the tensor operator. For a given rank Ki

the index qi takes on the values qi = −Ki,−Ki + 1, . . . , +Ki . We thus have (2Ki + 1)

tensor operators T
(i)
Kiqi

of rank Ki which transform under rotations according to an irreducible
representation of the rotation group. The explicit definitions of the tensors and a brief summary
of their properties are given in appendix A.

Using the tensor operators one defines Hermitian operators QK acting on the state space
of the composite spin system:

QK =
+K∑

q=−K

T
(1)
Kq ⊗ T

(2)†
Kq , (2.7)

where the index K takes on N1 different integer values:

K = 0, 1, . . . , 2j1. (2.8)
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It follows from the transformation properties of the tensor operators that all QK are invariant
under rotations. For instance, the operator Q0 is proportional to the identity, Q0 = 1√

N1N2
I ⊗I ,

while Q1 is proportional to the invariant scalar product ĵ(1) · ĵ(2) of the spin vectors.
The QK defined by equation (2.7) form a complete system of operators. This means that

any rotationally invariant Hermitian operator can be represented as a unique linear combination
of the QK in a way analogous to equation (2.4):

ρ = 1√
N1N2

∑
K

βK√
2K + 1

QK. (2.9)

Here, we have again introduced appropriate normalization factors and real parameters βK

which form a vector β in an N1-dimensional parameter space R
N1 referred to as β-space.

The operators QK satisfy tr{QKQK ′ } = (2K + 1)δKK ′ . This fact follows directly from the
orthogonality relation (A.1) for the spherical tensors. The QK for K �= 0 are therefore
traceless which leads to the normalization condition

tr ρ = β0 = 1. (2.10)

The sets {PJ } and {QK} represent complete systems of invariant operators. The
corresponding parameter vectors α and β must, therefore, be related by a linear transformation
R

N1 	→ R
N1 . We write

β = Lα, (2.11)

where L is an (N1 × N1) matrix. To find the elements of this matrix we use equations (2.4)
and (2.9) to get∑

J

αJ√
2J + 1

PJ =
∑
K

βK√
2K + 1

QK. (2.12)

Multiplying this equation by QK ′ and taking the trace we find that the elements of L are given
by

LKJ = [(2K + 1)(2J + 1)]−1/2 tr{QKPJ }. (2.13)

This can be expressed as

LKJ =
√

(2K + 1)(2J + 1)(−1)j1+j2+J

{
j1 j2 J

j2 j1 K

}
. (2.14)

The curly brackets denote a 6-j symbol introduced by Wigner [30] into the quantum theory of
angular momentum. A proof of the relation (2.14) is given in appendix B. The 6-j symbols are
scalar quantities which are defined through invariant sums over products of Clebsch–Gordan
coefficients. They describe the transformation between different coupling schemes for the
addition of three angular momenta [28]. Their properties have been studied in great detail and
many closed formulae, recursion relations and sum rules are known. In particular, it follows
from the sum rules that L represents an orthogonal (N1 × N1) matrix.

The above results lead to the conclusion that the set of SO(3)-invariant states is represented
in β-space by the set

Sβ = LSα. (2.15)

The set Sβ is again an (N1 −1)-dimensional simplex which may be constructed by determining
the images of the extreme points of Sα under the orthogonal transformation L.

The introduction of two parameter spaces is motivated by the following observations. On
the one hand, the set of states is most easily constructed as a subset in α-space. This is due
to the fact that the representation of equation (2.4) corresponds to the spectral decomposition
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of ρ and, therefore, the requirement of the positivity of ρ immediately leads to the simple
condition (2.5). On the other hand, the representation (2.9) of states in β-space is much more
suitable for the construction of the set of separable states, which is due to the fact that the
operation of the partial time reversal is diagonal in the QK -representation.

3. Invariant separable states

A state ρ of the composite spin system is said to be separable if it is possible to write this state
as a convex linear combination of product states:

ρ =
∑

i

λiρ
(1)
i ⊗ ρ

(2)
i , λi � 0,

∑
i

λi = 1, (3.1)

where the ρ
(1)
i and ρ

(2)
i are normalized states of the first and second spins, respectively [1]. It

is clear that the set in β-space which represents the invariant and separable states is a convex
subset of Sβ . This subset will be denoted by S

β
sep.

Following the work of Vollbrecht and Werner [15] we define a projection super-operator
(SO(3) twirling) by means of

�ρ =
∫

dRU(R)ρU(R)†, (3.2)

where U(R) ≡ D(j1)(R) ⊗ D(j2)(R) and the integration is extended over all group elements
R ∈ SO(3). The twirl operation maps any state ρ of the composite spin system to an
SO(3)-invariant state �ρ. Moreover, if ρ is separable then �ρ also is separable. In terms of
the invariant operators PJ or QK the action of the twirl operation may be expressed by

�ρ =
∑

J

tr{PJ ρ}
2J + 1

PJ =
∑
K

tr{QKρ}
2K + 1

QK. (3.3)

It is known that any invariant separable state is a convex linear combination of �-projections
of pure product states. Given a pure product state

ρ = |ϕ(1)ϕ(2)〉〈ϕ(1)ϕ(2)|, (3.4)

equation (3.3) shows that the corresponding parameters αJ and βK of its projection �ρ are
given by

αJ =
√

N1N2

2J + 1
〈ϕ(1)ϕ(2)|PJ |ϕ(1)ϕ(2)〉, (3.5)

βK =
√

N1N2

2K + 1
〈ϕ(1)ϕ(2)|QK |ϕ(1)ϕ(2)〉. (3.6)

We introduce into equation (3.6) the definition (2.7) of the QK and define the functions

β̃K [ϕ(1), ϕ(2)] =
√

N1N2

2K + 1

+K∑
q=−K

〈ϕ(1)|T (1)
Kq |ϕ(1)〉〈ϕ(2)|T (2)†

Kq |ϕ(2)〉. (3.7)

Let us further define Wβ as the range of the parameter vector β whose components are given
by these functions, where |ϕ(1)〉 ∈ C

N1 and |ϕ(2)〉 ∈ C
N2 run independently over all normalized

states of the first and second spins, respectively:

Wβ = {β | βK = β̃K [ϕ(1), ϕ(2)], ‖ϕ(1,2)‖ = 1}. (3.8)
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The set of separable states is then equal to the convex hull of Wβ :

Sβ
sep = hull(Wβ). (3.9)

This means that S
β
sep is equal to the smallest convex set which contains Wβ .

Within this formulation the problem of constructing S
β
sep reduces to the determination

of the convex hull of the range of the functions β̃K . Even for the present case of a highly
symmetric state space this is, in general, an extremely difficult task. A strong necessary
condition for separability is the Peres–Horodecki criterion [5, 6]. According to this criterion
a necessary condition for a given state ρ to be separable is that its partial transposition is a
positive operator: T2ρ ≡ (I ⊗ T )ρ � 0. Here, T B = BT denotes the transposition of the
operator B on C

N2 which is defined in terms of the basis states of the second spin by means
of 〈j2,m2|BT |j2,m

′
2〉 = 〈j2,m

′
2|B|j2,m2〉. The partial transposition T2 is then defined by

T2(A ⊗ B) = A ⊗ BT .
The operation of taking the partial transposition destroys the rotational invariance of

states, i.e., if ρ is invariant under rotations the partially transposed state T2ρ is generally
not SO(3)-invariant. However, there exists another operation which is unitarily equivalent
to T2 and which does map rotationally invariant operators to rotationally invariant operators.
This operation will be denoted by ϑ2 = I ⊗ ϑ . It involves the antiunitary time reversal
transformation ϑ of the second spin and will therefore be referred to as partial time reversal.

According to Wigner’s representation theorem [30], the action of the time reversal
transformation ϑ on an operator B can be expressed as

ϑB = V BT V † = τB†τ−1. (3.10)

In the first expression, T denotes again the transposition and V is a unitary matrix which
represents a rotation of the coordinate system about the y-axis by the angle π . In the second
expression of equation (3.10) τ denotes the operator τ = V τ0 which comprises the π -rotation
V and the operator τ0 of the complex conjugation. The operator τ is antiunitary and satisfies

τ 2 = (−1)2j2 . (3.11)

ϑ is a positive but not completely positive map. It is unitarily equivalent to the transposition
T and, hence, the Peres–Horodecki criterion can be expressed by

ϑ2ρ ≡ (I ⊗ ϑ)ρ � 0. (3.12)

A great advantage of the representation of states in β-space is that the operators QK

have a very simple behaviour under the map ϑ2. Namely, as is shown in appendix A, they
are eigenoperators of the partial time reversal: ϑ2QK = (−1)KQK . In β-space the map ϑ2

therefore induces a reflection of the coordinate axes corresponding to the odd values of K:

ϑ2 : βK 	→ (−1)KβK. (3.13)

We thus get the image ϑ2S
β of Sβ by reversing the signs of the odd coordinates.

We define S
β
ppt as the set of states which are positive under ϑ2 or, equivalently, under T2

(PPT states). This set is equal to the intersection of Sβ with its image ϑ2S
β . According to

the Peres–Horodecki criterion the set of separable states is a subset of the set of PPT states.
Hence, we have

Sβ
sep ⊂ S

β
ppt = Sβ ∩ ϑ2S

β. (3.14)

We note three properties which turn out to be useful in the construction of the set of
separable states.
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(1) The functions defined by equation (3.7) are invariant under simultaneous rotations of the
input arguments:

β̃K [D(j1)(R)ϕ(1), D(j2)(R)ϕ(2)] = β̃K [ϕ(1), ϕ(2)]. (3.15)

This property is an immediate consequence of the rotational invariance of the operators
QK .

(2) The range Wβ defined in equation (3.8) is obviously invariant under the partial time
reversal ϑ2. This means that β ∈ Wβ implies ϑ2β ∈ Wβ .

(3) There exist two distinguished separable states. These are the states given by the parameter
vector α with components

αJ =
√

N1N2

2Jmax + 1
δJ,Jmax , Jmax ≡ j1 + j2, (3.16)

and the partially time reversed state given by α′ = ϑ2α. To proof this statement we
consider a pure product state ρ of the form of equation (3.4) with |ϕ(1)〉 = |j1, +j1〉 and
|ϕ(2)〉 = |j2, +j2〉. We then have the obvious relation |J = Jmax,M = +Jmax〉 = |ϕ(1)ϕ(2)〉
and, hence,

〈ϕ(1)ϕ(2)|PJ |ϕ(1)ϕ(2)〉 = δJ,Jmax . (3.17)

Equation (3.5) then immediately leads to equation (3.16). This means that the pure product
state ρ is mapped under the twirl operation to the separable state �ρ = 1

2Jmax+1PJmax

corresponding to the maximal value of the total angular momentum Jmax. It follows from
point (2) that the partially time reversed state also is separable.

The point α given by equation (3.16) is an extreme point of the simplex Sα and its image
α′ is an extreme point of ϑ2S

α . Thus, α and α′ are extreme points of Sα
ppt. It follows that the

corresponding points β = Lα and β′ = Lα′ in β-space belong to Wβ and represent extreme
points of S

β
ppt.

As an illustration of the above analysis consider a 2 ⊗N2 system for which j1 = 1
2 and j2

is arbitrary. As has been demonstrated by Schliemann [24], the PPT criterion is a necessary
and sufficient separability condition in this case. Within the present formulation this statement
can be proven as follows. We first note that the index K takes on the two values K = 0, 1 such
that β is a two-dimensional vector. Because of the normalization condition (2.10) we only
need a single parameter β1 to characterize uniquely an invariant state of a 2 ⊗ N2 system. It
follows that Sβ can be represented by an interval of the β1-axis, and S

β
ppt by a sub-interval of

this interval. Since an interval has exactly two extreme points (its endpoints), we conclude
with the help of point (3) above that the extreme points of S

β
ppt belong to Wβ . By the

relation (3.9) the sets S
β
ppt and S

β
sep therefore coincide. This shows that the PPT criterion is

indeed necessary and sufficient for separability.

4. 3 ⊗ N systems

Let us now consider the case j1 = 1 (N1 = 3) and j2 arbitrary, i.e. the case of 3⊗N2 systems.
For convenience we write N ≡ N2 = 2j2 + 1. Since J takes on the values J = j2 − 1, j2 and
j2 + 1, α is a three-vector

α =

αj2−1

αj2

αj2+1


 . (4.1)
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The set Sα of invariant states is given by the relations:

αj2−1, αj2 , αj2+1 � 0 (4.2)

and √
N − 2

3N
αj2−1 +

√
1

3
αj2 +

√
N + 2

3N
αj2+1 = 1. (4.3)

We observe that Sα is a 2-simplex, i.e. a triangle whose vertices are given by the following
parameter vectors α:


0
0√
3N
N+2


 ,



√

3N
N−2

0
0


 ,


 0√

3
0


 . (4.4)

In order to transform to β-space we first determine the matrix L by means of the
formulae (B.3)–(B.5):

L =




√
N−2
3N

√
1
3

√
N+2
3N

−
√

(N−2)(N+1)

2N(N−1)
−
√

2
(N−1)(N+1)

√
(N−1)(N+2)

2N(N+1)√
(N+1)(N+2)

6N(N−1)
−
√

2(N−2)(N+2)

3(N−1)(N+1)

√
(N−1)(N−2)

6N(N+1)


 .

The extreme points of Sβ are found by applying this matrix to the vectors given in
equation (4.4). Since β0 is identically equal to 1 by the normalization condition (2.10),
we can represent points in β-space by two coordinates (β1, β2). One finds that Sβ is a triangle
in the (β1, β2)-plane with the vertices:

A =
(√

3(N − 1)

2(N + 1)
,

√
(N − 1)(N − 2)

2(N + 1)(N + 2)

)
, (4.5)

B =
(

−
√

3(N + 1)

2(N − 1)
,

√
(N + 1)(N + 2)

2(N − 1)(N − 2)

)
, (4.6)

C =
(

−
√

6

(N − 1)(N + 1)
,−

√
2(N − 2)(N + 2)

(N − 1)(N + 1)

)
. (4.7)

The image ϑ2S
β of Sβ under the partial time reversal is obtained by reversing the

sign of the coordinate β1. Consequently, S
β
ppt is a polygon with the four vertices A,A′,D and

E, where A is given by equation (4.5) and

A′ =
(

−
√

3(N − 1)

2(N + 1)
,

√
(N − 1)(N − 2)

2(N + 1)(N + 2)

)
, (4.8)

D =
(

0,−
√

2(N − 1)(N − 2)

(N + 1)(N + 2)

)
, (4.9)

E =
(

0,

√
(N + 1)(N − 1)

2(N + 2)(N − 2)

)
. (4.10)
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Figure 1. State space structure of a system composed of two particles with spins j1 = 1 and
j2 = 3

2 (N = 4). The triangle ABC represents the set Sβ of invariant states, while the triangle

ϑ2S
β is its image under the partial time reversal. The polygon AA′DE represents the set S

β
ppt of

the PPT states.
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Figure 2. The sets of the invariant states Sβ and of the invariant PPT states S
β
ppt for three different

values of N.

Here, A′ = ϑ2A is the image of A under ϑ2, while D and E are the intersections of the lines
AC and AB with the β2-axis, respectively. The case N = 4 is illustrated in figure 1. Similar
pictures are obtained for other values of N. Examples are shown in figure 2. Note that the
origin of the (β1, β2)-plane describes the state ρ = 1

3N
I ⊗ I of maximal entropy.

To construct the set S
β
sep of separable states we have to investigate the functions

β̃1[ϕ(1), ϕ(2)] =
√

N

+1∑
q=−1

〈ϕ(1)|T (1)
1q |ϕ(1)〉〈ϕ(2)|T (2)†

1q |ϕ(2)〉 (4.11)
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and

β̃2[ϕ(1), ϕ(2)] =
√

3N

5

+2∑
q=−2

〈ϕ(1)|T (1)
2q |ϕ(1)〉〈ϕ(2)|T (2)†

2q |ϕ(2)〉. (4.12)

We distinguish two cases, namely the cases of odd and of even N.

Theorem 1. For integer spins j2 = 1, 2, 3, . . . one has S
β
ppt = S

β
sep. Hence, for all 3 ⊗ N

systems with odd N the PPT criterion represents a necessary and sufficient condition for the
separability of rotationally invariant states.

To proof this theorem we show that the vertices A,A′,D and E of the polygon S
β
ppt belong

to Wβ . The statement S
β
ppt = S

β
sep then follows immediately from equation (3.9).

The point A corresponds to the parameter vector α given by equation (3.16). It follows
that this point as well as the point A′ = ϑ2A belongs to Wβ . Hence, it suffices to verify that
D,E ∈ Wβ .

To show that E ∈ Wβ we choose the states

|ϕ(1)〉 = |1,m1 = 0〉, |ϕ(2)〉 = |j2,m2 = 0〉. (4.13)

According to the selection rules for the matrix elements of the tensor operators (A.3) and to
equation (A.8) we have that 〈ϕ(1)|T (1)

1q |ϕ(1)〉 = 0 for q = 0,±1 and, therefore,

β̃1 = 0. (4.14)

On the other hand, the non-vanishing matrix elements of the second-rank tensors are given by
(see equation (A.10))

〈ϕ(1)|T (1)
20 |ϕ(1)〉 = − 2√

6
, (4.15)

and

〈ϕ(2)|T (2)
20 |ϕ(2)〉 = −2

√
5j2(j2 + 1)√

(N + 2)(N + 1)N(N − 1)(N − 2)
, (4.16)

which yields

β̃2 =
√

3N

5
〈ϕ(1)|T (1)

20 |ϕ(1)〉〈ϕ(2)|T (2)
20 |ϕ(2)〉

=
√

(N + 1)(N − 1)

2(N + 2)(N − 2)
. (4.17)

We see from equations (4.14), (4.17) and (4.10) that (β̃1, β̃2) = E and, hence, that the point
E belongs to Wβ .

To show that D also belongs to Wβ we take the states

|ϕ(1)〉 = |1, 0〉, |ϕ(2)〉 = |j2, +j2〉. (4.18)

Since the state |ϕ(1)〉 is the same as before, equations (4.14) and (4.15) hold true. Instead of
equation (4.16), however, we get

〈ϕ(2)|T (2)
20 |ϕ(2)〉 = 2

√
5
[
3j 2

2 − j2(j2 + 1)
]

√
(N + 2)(N + 1)N(N − 1)(N − 2)

. (4.19)

This gives

β̃2 =
√

3N

5
〈ϕ(1)|T (1)

20 |ϕ(1)〉〈ϕ(2)|T (2)
20 |ϕ(2)〉

= −
√

2(N − 1)(N − 2)

(N + 1)(N + 2)
. (4.20)
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Figure 3. The set of PPT states S
β
ppt for N = 4. The set S

β
sep lies entirely below the straight

line h through F which is parallel to the β1-axis. The broken line shows the curve defined by
equations (4.37) and (4.38).

A comparison with equation (4.9) shows that (β̃1, β̃2) = D ∈ Wβ . This concludes the proof
of the theorem.

Let us now turn to the case of half-integer spins j2, i.e., we assume that N is even. Of
course, we again have that A and A′ belong to Wβ . But also D ∈ Wβ because the state |j2, +j2〉
exists for integer as well as for half-integer spins j2. The argument following equation (4.18)
can thus also be applied in the present case. It follows that S

β
sep contains at least the triangle

AA′D (see figure 3).
On the other hand, the state |j2,m2 = 0〉 exists, of course, only for integer spins j2.

Instead of (4.13) we consider the states

|ϕ(1)〉 = |1, 0〉, |ϕ(2)〉 = |j2, +1/2〉, (4.21)

which lead to

β̃1 = 0, β̃2 =
√

(N + 2)(N − 2)

2(N + 1)(N − 1)
. (4.22)

This shows that the point

F =
(

0,

√
(N + 2)(N − 2)

2(N + 1)(N − 1)

)
(4.23)

belongs to Wβ . Hence, S
β
sep contains at least the polygon with the vertices A,A′,D and F.

We introduce the straight line h which intersects the point F and which is parallel to
the β1-axis (see figure 3). We are going to demonstrate that S

β
sep lies entirely below this

line. The line h is thus tangential to S
β
sep and corresponds to an optimal entanglement witness

(see section 5). To show this we employ the rotational invariance of the functions β̃K (see
equation (3.15)) to obtain a suitable parametrization of the states of the first spin j1 = 1.
Namely, by an appropriate rotation R, any state of this spin can be brought into the following
form:

|ϕ(1)〉 = √
r|1, +1〉 +

√
1 − r|1,−1〉, (4.24)
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where we omit an irrelevant overall phase factor and r is a real parameter taken from the
interval [0, 1]. Invoking the rotational invariance we may assume without restriction that
|ϕ(1)〉 is of this form. The state space of the first spin j1 has thus only a single relevant
parameter r ∈ [0, 1].

By use of the representation (4.24) the quantities β̃1 and β̃2 become functions of the
parameter r and of the state vector |ϕ(2)〉 of the second spin. Inserting equation (4.24) into
equation (4.11) and using equations (A.8) and (A.9) of appendix A, we get

β̃1[r, ϕ(2)] =
√

N

2
(2r − 1)〈ϕ(2)|T (2)

10 |ϕ(2)〉. (4.25)

The function β̃2 is found by substituting expression (4.24) into equation (4.12) and by using
equations (A.10)–(A.12). One finds that β̃2 can be written as the expectation value

β̃2[r, ϕ(2)] = 〈ϕ(2)|H(λ)|ϕ(2)〉 (4.26)

of the Hermitian (N × N) matrix

H(λ) ≡ H0 + λH1. (4.27)

Here, we have defined

H0 =
√

N

10
T

(2)
20 , H1 = 1

2

√
3N

5

(
T

(2)
22 + T

(2)†
22

)
,

and introduced the parameter

λ = 2
√

r(1 − r), 0 � λ � 1. (4.28)

For a given value of λ the function β̃2 defined by equation (4.26) is certainly smaller
than or equal to the largest eigenvalue of H(λ) which we denote by ε0(λ). We are going
to demonstrate below that ε0(λ) is a monotonically increasing function of λ and attains its
maximum at λ = 1:

ε0(1) =
√

(N + 2)(N − 2)

2(N + 1)(N − 1)
. (4.29)

Hence, we have

β̃2[r, ϕ(2)] � ε0(1) (4.30)

for all r and |ϕ(2)〉. Note that ε0(1) is equal to the β2-coordinate of the point F (see
equation (4.23)). This shows that, as claimed, all points of Wβ and, hence, all points
of S

β
sep lie below the line h.
To prove that ε0(λ) is a monotonically increasing function of λ we denote the eigenvalues

of H(λ) by εn(λ), where n = 0, 1, 2, . . . , and n = 0 labels the largest eigenvalue. With the
help of equation (A.6) one verifies that H(λ) is invariant under time reversal. It follows that
if |ϕ〉 is an eigenstate of H(λ) then also the time reversed state τ |ϕ〉 is an eigenstate with the
same eigenvalue. Since j2 is half-integer valued the states |ϕ〉 and τ |ϕ〉 are orthogonal. In
fact, using the antiunitarity of τ and equation (3.11) we get

〈τϕ|ϕ〉 = 〈τ 2ϕ|τϕ〉∗ = (−1)2j2〈τϕ|ϕ〉 = −〈τϕ|ϕ〉,
which shows that 〈τϕ|ϕ〉 = 0.

All eigenvalues εn(λ) are thus two-fold degenerate and we write the corresponding
eigenstates as |ϕn,k(λ)〉, where the index k = 1, 2 labels the eigenstates corresponding to
the same eigenvalue: |ϕn,2(λ)〉 = τ |ϕn,1(λ)〉. We remark that the two-fold degeneracy is
analogous to the Kramers degeneracy according to which the energy levels of an invariant
system of an odd number of spin- 1

2 particles are at least two-fold degenerate (see, e.g., [31]).
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Figure 4. The largest eigenvalue ε0(λ) of the matrix H(λ) defined by equation (4.27) for different
values of N.

The Hellman–Feynman theorem now yields

dε0

dλ
= 〈ϕ0,1(λ)|H1|ϕ0,1(λ)〉. (4.31)

In particular, we have

dε0

dλ

∣∣∣∣
λ=0

= 0. (4.32)

On differentiating equation (4.31) once again we find

d2ε0

dλ2
= 2

∑
n�=0,k

|〈ϕn,k(λ)|H1|ϕ0,1(λ)〉|2
ε0(λ) − εn(λ)

� 0. (4.33)

This shows that ε0(λ) is a convex function of λ with zero derivative at λ = 0. It follows that
ε0(λ) increases monotonically. Some examples of the behaviour of this function are shown in
figure 4.

It remains to verify equation (4.29). We first note that H(1) can be written with the help
of equations (A.10) and (A.12) in terms of the spin operator ĵ(2) as

H(1) = 2

√
2

(N + 2)(N + 1)(N − 1)(N − 2)

(
[ĵ(2)]2 − 3

[
ĵ (2)

y

]2)
. (4.34)

The largest eigenvalue of this matrix is given by

ε0(1) = 2

√
2

(N + 2)(N + 1)(N − 1)(N − 2)

(
j2(j2 + 1) − 3

4

)
. (4.35)

Using N = 2j2 + 1 one shows that this equation coincides with equation (4.29).
We finally demonstrate that the boundary of S

β
sep is differentiable at the point F (see

equation (4.23)). To this end, we construct a smooth curve which belongs to Wβ and passes
the point F. Consider the following fixed state of the second spin:

|ϕ(2)〉 = 1√
2

∣∣ĵ (2)
y = +1/2

〉
+

i√
2

∣∣ĵ (2)
y = −1/2

〉
. (4.36)
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This is an eigenstate of the matrix H(1) [equation (4.34)] corresponding to the largest
eigenvalue ε0(1). Since |ϕ(2)〉 is fixed, the functions β̃1 and β̃2 depend only on the parameter r
and describe a curve in the (β1, β2)-plane. Writing r ≡ (1 + µ)/2 and determining the matrix
elements one finds

β̃1 =
√

3N2

8(N + 1)(N − 1)
µ, (4.37)

β̃2 = ε0(1)

4

(
1 + 3

√
1 − µ2

)
, (4.38)

where −1 � µ � +1. The curve described by these equations represents the upper half of an
ellipse in the (β1, β2)-plane (see figure 3). It intersects the point F and lies entirely in Wβ .
Since F is the only point of h belonging to Wβ , it follows that the boundary of the separability
region must be curved and that it is differentiable at the extreme point F, the line h being the
tangent. Summarizing, we have shown:

Theorem 2. For half-integer spins j2 = 3
2 , 5

2 , 7
2 , . . . , the set S

β
sep of separable states is a true

subset of the set of PPT states. Hence, for all 3 ⊗ N systems with even N the PPT criterion is
only necessary and there always exist entangled PPT states. The line h represents the tangent
to S

β
sep at the extreme point F. The set S

β
sep is bounded by the straight lines AD and A′D and

by a concave curve which passes the points A,A′ and F.

5. Discussion and conclusions

The state space structure of rotationally invariant spin systems has been analysed in this
paper. The set of invariant states has been represented by means of two systems of invariant
operators, namely by the projections PJ onto the total angular momentum manifolds and by
the invariant operators QK composed of the spherical tensors. The transformation between
both representations was found to be given by a matrix L which is determined by certain 6-j
symbols of Wigner. The QK -representation is particularly useful in applying the PPT criterion
for separability because the QK are eigenoperators of the partial time reversal. The method
has been demonstrated to lead to a complete classification of separability of 3 ⊗ N systems.
We have shown that the PPT criterion is necessary and sufficient for all systems with odd N,
while entangled PPT states exist for systems with even N.

Some remarks on the structure of the state space in the limit N → ∞ might be of
interest. In this limit the value of the second spin j2 becomes arbitrary large. We infer from
equations (4.6)–(4.9) that the point B then converges to the point A′, and C to D. At the
same time F converges to E (see equations (4.10) and (4.23)). Hence, as N increases the
set S

β
ppt approaches the set Sβ and S

β
sep approaches S

β
ppt. This behaviour is also indicated in

figure 2. The limit N → ∞ thus corresponds to a kind of classical limit in which all invariant
states have a positive partial transpose and are separable.

The line h constructed in section 4 leads to an entanglement witness which we denote
by W . An entanglement witness is a Hermitian operator which satisfies tr{Wσ } � 0 for
any separable state σ , and tr{Wρ} < 0 for at least one non-separable state ρ [6, 12]. The
hyperplane h corresponding to an entanglement witness W is defined by tr{Wρ} = 0. In
the case of 3 ⊗ N systems h is a one-dimensional line and the witness is, in fact, optimal
[13] because h is tangential to the region of separable states. We have formulated the witness
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in β-space. Transforming back to α-space one easily shows that the entanglement witness
corresponding to h may be written in terms of the projections PJ as

W = − 1

N − 2
Pj2−1 + Pj2 +

1

N + 2
Pj2+1. (5.1)

This expression leads to the following physical interpretation of W . Suppose one carries out
a measurement of the total angular momentum J on some invariant state ρ. If ρ is separable
the inequality

− pj2−1

N − 2
+ pj2 +

pj2+1

N + 2
� 0 (5.2)

must be satisfied, where pJ = tr{PJ ρ} denotes the probability of finding the value J . In other
words, if the inequality (5.2) is violated the state ρ must necessarily be entangled.

We exploit the witness (5.1) to design a prescription for the detection of entangled PPT
states in 3 ⊗ N systems with even N (bound entanglement [32]). A given state ρ is positive
under partial transposition if and only if the corresponding point (β1, β2) lies below the line
through A′ and E, and above the line through A′ and D (see figure 1). If we transform to
α-space this yields the conditions

−2pj2−1

N − 1
+

(N2 − 5)pj2

(N + 1)(N − 1)
+

2pj2+1

N + 1
� 0 (5.3)

and

2pj2−1

(N − 1)(N − 2)
− 2pj2

N − 1
+ pj2+1 � 0. (5.4)

These inequalities are equivalent to the PPT condition (3.12). Hence, entangled PPT states can
be detected in the following way. Suppose again that a total angular momentum measurement
is performed on some state ρ. If one finds that the measurement outcomes, i.e. the probabilities
pJ , satisfy the inequalities (5.3) and (5.4) and violate the inequality (5.2) then the state ρ must
be an entangled PPT state.

The witness W defined in equation (5.1) does not detect all entangled PPT states. As has
been shown in section 4, a part of the boundary of the region of the separable states is curved
and, therefore, one needs an infinite number of linear entanglement witnesses. The upper
boundary of S

β
sep can, of course, be described by means of a suitable nonlinear equation. A

possible way to derive the latter is to construct the envelope of appropriate families of curves
of the type given by equations (4.37) and (4.38).

The considerations of section 4 reveal that for 3 ⊗ N2 systems half-integer spins are
crucial for the emergence of entangled PPT states. The entanglement structure of systems
involving half-integer spins is thus quite different from those with integer spins. It seems that
this is closely connected to the fact that pure states which are invariant under time reversal
only exist for integer spins, while for half-integer spins a given pure state is always orthogonal
to its time reversed state. A clear physical interpretation of this result and its generalization to
arbitrary N1 ⊗ N2 systems is of great interest. The next step to further investigate this point
could be to study 4 ⊗ N2 systems, which is possible by the method developed in this paper.
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Appendix A. Spherical tensor operators

We define here the irreducible spherical tensor operators TKq acting on the state space C
N of a

particle with spin j , where N = 2j + 1,K = 0, 1, . . . , 2j , and q = −K, . . . , +K . The tensor
operators T

(i)
Kiqi

for i = 1, 2 used in the main text are obtained by setting j = j1 or j = j2.

The spherical tensor operators TKq represent a complete system of operators on C
N . This

means that any operator on the state space of the spin-j particle may be written as a unique
linear combination of the TKq . Moreover, the tensors are orthonormal with respect to the
Hilbert–Schmidt inner product:

tr
{
T

†
K ′q ′TKq

} = δKK ′δqq ′ . (A.1)

For a fixed K the (2K +1) operators TKq represent the spherical components of a tensor of rank
K. They transform according to an irreducible representation of SO(3) which corresponds to
the angular momentum K:

D(j)(R)TKqD
(j)(R)† =

+K∑
q ′=−K

D
(K)
q ′q (R)TKq ′ . (A.2)

For instance, the T1q behave as components of a vector, and the T2q as components of a
second-rank tensor.

The matrix elements of the tensors may be defined in terms of Wigner’s 3-j symbols as
[28, 30]

〈j,m|TKq |j,m′〉 =
√

2K + 1(−1)j−m

(
j j K

m −m′ −q

)
. (A.3)

The 3-j symbols are closely related to the Clebsch–Gordan coefficients:

〈j1,m1; j2,m2|JM〉 =
√

2J + 1(−1)j1−j2+M

(
j1 j2 J

m1 m2 −M

)
. (A.4)

According to the selection rules for the 3-j symbols the matrix element (A.3) is equal to zero
for m − m′ − q �= 0. In particular, we have T00 = 1√

N
I .

The matrix elements (A.3) of the tensor operators are real and one has T
†
Kq = T T

Kq =
(−1)qTK,−q . It follows that the TKq are eigenoperators of the time reversal transformation ϑ

which was defined in equation (3.10). In fact, using the transformation behaviour (A.2) of the
tensors and the fact that a rotation by π about the y-axis is represented by the unitary matrix

D
(K)
q ′q (π) = (−1)K−q ′

δq ′,−q, (A.5)

one finds

ϑTKq = V T T
KqV

† = (−1)KTKq. (A.6)

As a consequence, the operators QK which have been introduced in equation (2.7) are
eigenoperators of the partial time reversal ϑ2 = I ⊗ ϑ :

ϑ2QK = (−1)KQK. (A.7)

We finally list the non-vanishing matrix elements of the tensor operators needed in
section 4:

〈j,m|T10|j,m〉 = 2m

√
3

N(N − 1)(N + 1)
, (A.8)
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〈j,m|T †
11|j,m + 1〉 = −

√
6(j − m)(j + m + 1)

N(N − 1)(N + 1)
, (A.9)

〈j,m|T20|j,m〉 = 2
√

5[3m2 − j (j + 1)]√
(N + 2)(N + 1)N(N − 1)(N − 2)

, (A.10)

〈j,m|T †
21|j,m + 1〉 = −

√
5(1 + 2m)

√
6(j − m)(j + m + 1)

(N + 2)(N + 1)N(N − 1)(N − 2)
, (A.11)

〈j,m|T †
22|j,m + 2〉 =

√
5

√
6(j − m − 1)(j − m)(j + m + 1)(j + m + 2)

(N + 2)(N + 1)N(N − 1)(N − 2)
. (A.12)

Appendix B. Proof of relation (2.14)

The starting point is given by equation (2.13). We insert into this equation the definitions
(2.2) and (2.7) for the invariant operators PJ and QK , and introduce complete sets of product
basis states |j1,m1; j2,m2〉. This yields a multiple sum over products of two Clebsch–Gordan
coefficients and two matrix elements of the tensor operators. By use of equations (A.3) and
(A.4) the Clebsch–Gordan coefficients as well as the matrix elements of the spherical tensors
can be written in terms of the 3-j symbols. We also use the selection rules for the 3-j symbols
and their symmetry properties. This procedure leads to the following sum over 4-fold products
of 3-j symbols:

LKJ =
√

(2K + 1)(2J + 1)(−1)j1+j2+J
∑
{mi }

χ({mi})

×
(

j1 j2 J

m1 m2 m3

)(
j1 j1 K

−m1 m5 −m6

)

×
(

j2 j2 K

−m4 −m2 m6

)(
j2 j1 J

m4 −m5 −m3

)
, (B.1)

where χ({mi}) is a phase factor:

χ({mi}) = (−1)j1+m1(−1)j2+m2(−1)J+m3(−1)j2+m4(−1)j1+m5(−1)K+m6 .

The sum over the quantum numbers m1, . . . , m6 in equation (B.1) exactly corresponds to a
certain 6-j symbol of Wigner [30]. A general 6-j symbol involves six angular momenta and
is written as {

j1 j2 j3

j4 j5 j6

}
. (B.2)

The sum of equation (B.1) is equal to the 6-j symbol (B.2) with j3 = J, j4 = j2, j5 = j1

and j6 = K . Hence, we see that equation (B.1) reduces to equation (2.14). We remark that a
similar technique has been used in [25] in order to derive an expression for the matrix which
represents the partial time reversal ϑ2 in the PJ -representation.

By use of the formulae for the 6-j symbols [28] we find that the first three rows of L are
given by

L0J =
√

2J + 1

N1N2
, (B.3)
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and

L1J = −2
√

3(2J + 1)
j1(j1 + 1) + j2(j2 + 1) − J (J + 1)√

(N1 − 1)N1(N1 + 1)(N2 − 1)N2(N2 + 1)
, (B.4)

L2J = 2
√

5(2J + 1)

× 3X(X − 1) − 4j1(j1 + 1)j2(j2 + 1)√
(N1 − 2)(N1 − 1)N1(N1 + 1)(N1 + 2)(N2 − 2)(N2 − 1)N2(N2 + 1)(N2 + 2)

,

(B.5)

where

X ≡ j1(j1 + 1) + j2(j2 + 1) − J (J + 1).
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